Liquid Cooled Viscoelastic Actuation for Robust Legged Robot Locomotion, Phase I

Completed Technology Project (2016 - 2016)

Project Introduction

The work proposed here seeks to significantly improve actuation technology for mission-capable articulated robots and exoskeletons such as NASA's Robonaut 2, Valkyrie, and ATHLETE systems. The goal is enabled by a new type of robotic actuation technology, Viscoelastic Liquid Cooled Actuation (VLCA), which offers improved energy efficiency, power density, and mechanical robustness over conventional actuators for space applications. The scope of the proposed work encompasses the construction and experimental evaluation of a VLCA prototype for Phase I, including the mechanical structures, avionics, and embedded control software. Additional work in Phase I will include studies on liquid cooled brushless DC motor architectures and space-compatible elastomers that will reduce risk for a detailed VLCA design and build in Phase II.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Apptronik, Inc.	Lead Organization	Industry	Austin, Texas
● Johnson Space Center(JSC)	Supporting Organization	NASA Center	Houston, Texas

Liquid cooled viscoelastic actuation for robust legged robot locomotion, Phase I

Table of Contents

Project Introduction Primary U.S. Work Locations	1
and Key Partners	1
Project Transitions	
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Liquid Cooled Viscoelastic Actuation for Robust Legged Robot Locomotion, Phase I

Completed Technology Project (2016 - 2016)

Primary U.S. Work Locations

Texas

Project Transitions

June 2016: Project Start

December 2016: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139810)

Images

Briefing Chart Image

Liquid cooled viscoelastic actuation for robust legged robot locomotion, Phase I

(https://techport.nasa.gov/imag e/131140)

Final Summary Chart Image

Liquid cooled viscoelastic actuation for robust legged robot locomotion, Phase I Project Image (https://techport.nasa.gov/imag e/136187)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Apptronik, Inc.

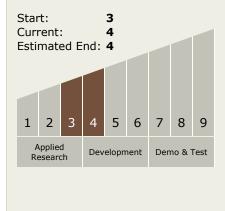
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Nicholas A Paine

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Liquid Cooled Viscoelastic Actuation for Robust Legged Robot Locomotion, Phase I

Completed Technology Project (2016 - 2016)

Technology Areas

Primary:

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

